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We investigate solutions to the equation “tE−DDE=lS2E, where S(x, t) is a
Gaussian stochastic field with covariance C(x−xŒ, t, tŒ), and x ¥ Rd. It is shown
that the coupling lcN(t) at which the N-th moment OEN(x, t)P diverges at time t,
is always less or equal for D > 0 than for D=0. Equality holds under some
reasonable assumptions on C and, in this case, lcN(t)=Nlc(t) where lc(t) is the
value of l at which Oexp[l > t0 S2(0, s)ds]P diverges. The D=0 case is solved for
a class of S. The dependence of lcN(t) on d is analyzed. Similar behavior is
conjectured when diffusion is replaced by diffraction, DQ iD, the case of inter-
est for backscattering instabilities in laser-plasma interaction.

KEY WORDS: Diffusion; Gaussian field; backscattering.

I. INTRODUCTION

We investigate the development of a linear amplification in a system driven
by the square of a Gaussian noise. This problem arose and continues to be
of interest in modeling the backscattering of an incoherent high intensity
laser light by a plasma. There is a large litterature on this topic, and we
refer the interested reader to ref. 1 for background. Our starting point here



is the work by Rose and Dubois (2) who investigated the following equation
for the complex amplitude E(x, z) of the scattered electric field

3“zE(x, z)− iDDE(x, z)=l |S(x, z)|
2 E(x, z),

z ¥ [0, L], x ¥ L … R2, and E(x, 0)=E0(x).
(1)

In Eq. (1), z and x correspond to the axial and transverse directions in a
plasma of length L and cross-sectional domain L. The input at z=0, E0(x),
is a given function of x and L will be generally taken to be a torus (e.g. in
numerical solutions of Eq. (1) using spectral methods). The coupling con-
stant l > 0 is proportional to the average laser intensity and D is a constant
parameter introduced for convenience. The complex amplitude of the laser
electric field S(x, z) is a homogeneous Gaussian stochastic field defined by

OS(x, z)P=OS(x, z)S(xŒ, zŒ)P=0,

OS(x, z) S(xŒ, zŒ)g P=C(x−xŒ, z−zŒ),

where the correlation function C(x, z) is the solution to

˛“zC(x, z)+i
2
DC(x, z)=0,

z ¥ [0, L], x ¥ L, and C(x, 0)=C(x),

(2)

with C(x) a given function of x, (3) normalized so that C(0) — O|S(x, z)|2P
=1.

Using heuristic arguments and numerical simulations, Rose and
DuBois found that the expected value of the energy density of the scattered
field O|E(x, L)|2P diverged for every L > 0 as l increased to some critical
value lc(L). The average O|E|2P is over the realizations of the Gaussian
field S. This divergence indicates a breakdown in the assumptions made in
deriving Eq. (1), which neglects both nonlinear saturation and transient
time evolution. (2, 4) Physically, it can be interpreted as indicating a change in
the nature of the amplification caused by the plasma.

To see the origin of this divergence in its simplest form, consider the
case where D is set equal to zero in Eq. (1), and neglect all dependence of S
on x and z. We are then led to the equation

dE(z)
dz

=lS2E(z), (3)

which yields

E(z)=E(0) elS
2z, z > 0.
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Here S2=S21+S
2
2 and S1, S2 are two independent real Gaussian random

variables with zero mean and unit variance. It is easily seen that the prob-
ability distribution of E(z), setting E(0)=1, has the density

W(E, z)=(2lz) −1 E −[1+(2lz)−1] for E \ 1, z > 0. (4)

If we now take moments of E at some value L of z, we find that OEN(L)P
will diverge whenever 2NlL \ 1. At the critical coupling lcN(L)=(2NL) −1,
there is a qualitative transition of the amplification of OEN(L)P from a
regime where it is dominated by the bulk of the order-one-fluctuations of S
to a regime where it is dominated by the large fluctuations of S. This toy
model can be thought of as an idealization in which the size of the plasma
is very small compared to the correlation length of the laser field. This is
certainly not a reasonable physical approximation and we shall later con-
sider situations in which S in Eq. (3) is z-dependent with a covariance
C(z, zŒ). The equation is then still solvable more or less explicitly, depend-
ing on the form of C, at least as far as the dependence of the divergence of
the moments of E on l and L is concerned. The main difference from
Eq. (4) is that for small enough values of l, the first few moments need not
diverge for any L.

In this paper, we extend these results to the x-dependent case where iD
in Eq. (1) is replaced by D, i.e. we consider a diffusive process in x rather
than a diffractive one. Somewhat surprisingly the diffusion does not
suppress the onset of divergences in moments of the field. This suggests a
similar behavior for the diffractive case—in accord with the numerical
results of ref. 2—but we are unable to prove this at the present time.

Before going on to the formulation and presentation of results for the
diffusive case, we make some remarks about the relation between expecta-
tions over different realizations of the Gaussian driving term |S|2 and the
outcome of a given experiment. Accepting the idealizations inherent in
assuming Gaussian statistics and neglect of nonlinear terms, the physically
relevant question relating to the solution of the stochastic PDE (1) appears
to be the following: What is the probability that for given L and L there
will be small regions in L through which a significant fraction of the total
incoming power is backscattered, (here "total" means through the whole
domain L). Put more physically, imagine L to be divided up into M± 1
cells of equal area |L|/M and let R± 1/M be a specified number. We
want to compute the probability P that in at least one of the cells the
integral of |E|2 over that cell exceeds R |L|. In the case where D is set equal
to zero, this can be answered by taking for the cell size the transverse cor-
relation length of |S|2 and assuming the field inside each cell to be trans-
versally constant and evolving along z under Eq. (3) with a z-dependent S.
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One finds that P greatly increases as l passes its critical value for the
divergence of the second moment, from P° 1 for l < lc2(L) to P 4 1 for
l > lc2(L). We expect that this probability will behave similarly in real
systems.

The outline of the rest of this paper is as follows. In Section 2 we
introduce our diffusion-amplification model. In Section 3 we prove that the
value of the critical coupling obtained without the diffusion term cannot be
less than the one obtained with the diffusion term. In Section 4 we prove
that for a large class of Gaussian fields S the values of the critical coupling
obtained with or without the diffusion term are the same. Section 5 is
devoted to the explicit solution of the diffusion-free problem in the partic-
ular case where the on-axis field S(0, z) is a linear functional of a Gauss–
Markov process. Finally, in Section 6 we study the dependence of the cri-
tical coupling on the space dimensionality in the case of a factorable corre-
lation function C.

II. MODEL AND DEFINITIONS

As explained in the introduction, we consider a modified version of the
linear convective amplifier model obtained by replacing iD by D on the left-
hand side of Eq. (1). Taking D=1/2 without loss of generality, one is thus
led to the problem

3“tE(x, t)−
1
2 DE(x, t)=lS(x, t)

2 E(x, t),
t ¥ [0, T], x ¥ Rd, and E(x, 0)=E0(x),

(5)

where, following the usual notation used in diffusion problems, the time
variable t (resp. T) plays the role of the axial space variable z (resp. L). In
Eq. (5), we restrict ourselves to the cases where S(x, t) is a real homoge-
neous Gaussian field defined by

OS(x, t)P=0,

OS(x, t) S(xŒ, tŒ)P=C(x−xŒ, t, tŒ),

with the normalization C(0, 0, 0) — OS(x, 0)2P=1, and we will take
E0(x) — 1 as an initial condition. Note that S(x, t) is not assumed to be
stationary in t, and that the rest of our analysis is essentially unaffected if
we replace Rd by a d-dimensional torus.

The critical coupling lcN(T) and its diffusion-free counterpart l̄cN(T)
are defined by

lcN(T)=inf {l > 0 : OE(0, T)NP=+.}, (6a)

l̄cN(T)=inf {l > 0 : OeNl >
T
0 S(0, t)

2 dtP=+.}, (6b)
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where O.P denotes the average over the realizations of S. For a given T > 0,
Eqs. (6) gives the value of l at which OE(x, T)NP blows up with and
without diffusion respectively.

Finally, in order not to make the calculations too cumbersome, we will
use in the following the compact notation

t — (n, t),

F dt — C
N

n=1
F
T

0
dt,

S(t) — S(xn(t), t),

C(s, t) — OS(s) S(t)P=C(xn(s)−xm(t), s, t),

C0(s, t) — C(0, s, t),

(j, k)=F j(t) k(t) dt,

with s, t ¥ [0, T], n, m ¥N (1 [ n, m [N), and where the xn( · ) are given
continuous paths on Rd. The covariance operators T̂C and t̂C0, respectively
acting on j(t) ¥ L2(dt) and j(t) ¥ L2(dt), are defined by

(T̂Cj)(s)=F C(s, t) j(t) dt,

(t̂C0j)(s)=F
T

0
C(0, s, t) j(t) dt.

III. COMPARISON OF lCN(T) AND l̄CN(T)

In this section we prove that lcN(T) [ l̄cN(T). We begin with two
technical lemmas that will be useful in the following.

Lemma 1. Suppose the covariance function C(x, t, tŒ) is continuous.
Let mx(t)1 \ mx(t)2 \ · · · \ 0 be the eigenvalues of the covariance operator T̂C.
Here, the superscript x(t) denotes the N continuous paths xn(t), 1 [ n [N.
Then Oexp l > S(t)2 dtP <+. if and only if l < (2mx(t)1 ) −1, and in this case
one has

log Oel > S(t)
2 dtP=−

1
2
C
i \ 1

log (1−2lmx(t)i ) [
Nl >T0 C(0, t, t) dt

1−2lmx(t)1

. (7)
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To show (7), consider the Hilbert space of the L2(dt) functions
j(n, t) — j(t) with the scalar product (j, k). Since C(s, t) is continuous
in (s, t), and therefore bounded in compact sets, we have that
> > C(s, t)2 dsdt <+.. By ref. 5, Theorem VI.23, it follows that the
covariance operator is compact (and self-adjoint) in L2(dt). Therefore there
is an orthonormal basis {jj}j \ 1 such that T̂Cjj=m

x(t)
j jj. Consider now the

sequence of random variables Xj=(S, jj). As linear functionals of the
Gaussian field S, the Xj’s form a Gaussian sequence with OXiP=0 and
OXiXjP=(ji, T̂Cjj)=m

x(t)
j dij. The equality in Eq. (7) is then obtained

straightforwardly from > S2(t) dt=;+.
j=1 X

2
j and the simple Gaussian

identity OelX
2
iP=(1−2lmx(t)i ) −1/2, for 2lmx(t)i < 1. The inequality in Eq. (7)

follows from − log(1−x) [ x/(1−x) and the fact that ;i m
x(t)
i =

> C(t, t) dt=N >T0 C(0, t, t) dt.
In the following subsection, j(t) — j(n, t) will denote a set of N test

functions normalized such that (j, j)=;N
n=1 >T0 j(n, t)2 dt=1.

Lemma 2. Assume that for every T > 0 one has limxQ 0 sups, t ¥ [0, T]
|C(x, s, t)−C(0, s, t)|=0. Then, -e > 0, ,d > 0 such that

|(j, T̂Cj)−(j, T̂C0j)| < e

for every xn( · ) ¥ Bd, T, 1 [ n [N, where Bd, T is the set of continuous paths
x( · ) such that |x(t)| < d for every t ¥ [0, T].

The proof of this lemma is straightforward: from the uniform conver-
gence condition on C(x, s, t) it follows that -e > 0, ,d > 0 such that
|C(s, t)−C0(s, t)| < e for every xn( · ) ¥ Bd, T, 1 [ n [N. Thus, -e − > 0, ,d > 0
such that

|(j, T̂Cj)−(j, T̂C0j)| [ (|j|, T̂|C−C0| |j|)

< e − 1F |j(s)| ds2
2

[ e −NT,

for every xn( · ) ¥ Bd, T, 1 [ n [N. It remains to take e −=e/(NT), which
proves Lemma 2.

We can now state the main result of this section. Namely, that one of
the diffusion effects on the divergence of the moments of E(x, T) is a
lowering (or, more exactly, a non-increasing) of the critical coupling. The
rigorous formulation of this result can be stated as the following proposi-
tion.
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Proposition 1. For every T > 0, if limxQ 0 sups, t ¥ [0, T] |C(x, s, t)−
C(0, s, t)|=0, then lcN(T) [ l̄cN(T).

In order to prove this proposition, one writes the moments of E in
terms of the Feynman–Kac formula

OE(0, T)NP=77exp 5l F S(t)2 dt688
x(t)
, (8)

where O ·Px(t) denotes a N-fold Wiener integral over N Brownian paths
xn(t), 1 [ n [N, each arriving at x=0. Let l > l̄cN(T), i.e. m1 > (2Nl) −1,
where m1 is the largest eigenvalue of the covariance operator t̂C0. Let f1(t)
be the normalized eigenfunction associated with m1, and f(t) — f(n, t)=
N −1/2f1(t) for every 1 [ n [N. [N.B.: the factor N −1/2 ensures the nor-
malization (f, f)=1]. By definition of mx(t)1 , one has

mx(t)1 \ (f, T̂Cf). (9)

By Lemma 2, -e > 0, ,d > 0 such that

(f, T̂Cf) \ (f, T̂C0f)− e=Nm1− e (10)

for every xn( · ) ¥ Bd, T, 1 [ n [N. If one now takes e <Nm1−
1
2l , it follows

from Eqs. (9) and (10) that mx(t)1 > 1/2l and so, by Lemma 1,

7exp 5l F S(t)2 dt68=+.

for every xn( · ) ¥ Bd, T, 1 [ n [N. Finally, since the set of the Brownian
paths xn(t) that are in Bd, T has a strictly positive Wiener measure, one finds
from Eq. (8) that OE(0, T)NP=+., so l \ lcN(T) which proves the pro-
position 1.

Note that imposing the uniform convergence of C(x, s, t) to C(0, s, t)
is not a very restrictive condition. As far as we know, it seems to be ful-
filled by any nonpathological stochastic field S of physical interest.

IV. EQUALITY OF lCN(T) AND l̄CN(T) FOR A CLASS OF S

For a large class of Gaussian fields S it is possible to prove that diffu-
sion has no effect on the onset of the divergence of OE(x, T)NP, i.e.
lcN(T)=l̄cN(T).

Proposition 2. Assume that for every T > 0 one has limxQ 0

sups, t ¥ [0, T] |C(x, s, t)−C(0, s, t)|=0, and that |C(x, s, t)| [ C(0, s, t) for
every x ¥ Rd and s, t ¥ [0, T]. Then lcN(T)=l̄cN(T).
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The proof of this proposition is as follows: By the uniform con-
vergence condition on C(x, s, t) and Proposition 1 one already has
lcN(T) [ l̄cN(T). It remains to show that l̄cN(T) [ lcN(T). Let m1 be the
largest eigenvalue of the covariance operator t̂C0. Let f1(t) be a principal
(normalized) eigenvector for the covariance operator T̂C. One has

mx(t)1 =(f1, T̂Cf1) [ (|f1|, |T̂Cf1|) [ (|f1|, T̂C0|f1|) [Nm1,

where the second inequality follows from the condition |C(x, s, t)| [
C(0, s, t). Suppose now l < l̄cN(T), i.e. l < (2Nm1) −1. Then l < (2mx(t)1 ) −1

and by Lemma 1

7exp 5l F S(t)2 dt68 [ exp 5Nl >
T
0 C(0, t, t) dt
1−2lmx(t)1

6 [ exp 1Nl >
T
0 C(0, t, t) dt
1−2Nlm1

2 .

Since this inequality is uniform over all Brownian paths, we finally have

OE(0, T)NP [ exp 1Nl >
T
0 C(0, t, t) dt
1−2Nlm1

2 <+.,

and therefore l < lcN(T), which proves the proposition 2.
This result shows that for Gaussian fields S fulfilling the not so

restrictive conditions of Proposition 2, it is sufficient to solve the diffusion-
free problem to determine the onset of the divergence of OE(x, T)NP.
It is therefore interesting to show how such fields can be actually obtained.
To this end, the remaining of this section will be devoted to explicitely
construct two typical examples of stochastic fields S which fulfill the
conditions of Proposition 2.

A. An Example of Nonstationary S

The first example is the diffusive counterpart of the Gaussian field
defined by Eq. (2). Let S(x, t) be the solution to

3“tS(x, t)−
1
2 DS(x, t)=0,

t ¥ [0, T], x ¥ Rd, and S(x, 0)=S(x),
(11)

where S(x) is a real homogeneous Gaussian field defined by

OS(x)P=0,

OS(x)S(xŒ)P=C(x−xŒ),
(12)
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with C(x) a given (3) function of x normalized such that C(0) —
OS(x, 0)2P=1. One has

S(x, t)=FS(k) e ikx−
1
2 k
2tddk, (13)

where S(k) is the Fourier transform of S(x), and from Eqs. (12) and (13)
it follows that S(x, t) is a real homogeneous nonstationary Gaussian field
with

OS(x, t)P=0,

OS(x, t) S(xŒ, tŒ)P=F C(k) e ik(x−xŒ)−
1
2 k
2(t+tŒ)ddk,

(14)

where C(k) is the Fourier transform of C(x). Since C(k) is real and
positive, (3) one has

|C(x, s, t)| — |OS(x, s)S(0, t)P|

=:F C(k) e ikx−
1
2 k
2(s+t)ddk:

[ F C(k) e −
1
2 k
2(s+t)ddk=C(0, s, t),

for every x ¥ Rd and s, t ¥ [0, T], so S(x, t) fulfills the conditions of Pro-
position 2.

B. An Example of Stationary S

The second example is provided by a modified version of Eq. (11)
obtained by adding a source term à la Langevin on its right-hand side.
Namely, let S(x, t) be the solution to

3“tS(x, t)−
1
2 DS(x, t)=L(x, t),

t ¥ ]−., T], x ¥ Rd, and S(x, −.)=0,
(15)

where the Langevin source term L(x, t) is a homogeneous Gaussian white
noise defined by

OL(x, t)P=0,

OL(x, t) L(xŒ, tŒ)P=−d(t− tŒ) DxC(x−xŒ),
(16)
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with C(x) a given (3) function of x normalized such that C(0)=1. The solu-
tion to Eq. (15) reads

S(x, t)=F ddk 5e ikx F t
−.

e −
1
2 k
2(t−s)L(k, s) ds6 , (17)

where L(k, t) is the Fourier transform of L(x, t). From Eqs. (16) and (17) it
can be shown that S(x, t) is a real homogeneous stationary Gaussian field
with

OS(x, t)P=0,

OS(x, t) S(xŒ, tŒ)P=F C(k) e ik(x−xŒ)−
1
2 k
2 |t− tŒ|ddk,

(18)

where C(k) is the Fourier transform of C(x). As previously, since C(k) is
real and positive, (3) one has

|C(x, s, t)| — |OS(x, s) S(0, t)P|

=:F C(k) e ikx−
1
2 k
2 |s− t|ddk:

[ F C(k) e −
1
2 k
2 |s− t|ddk=C(0, s, t),

for every x ¥ Rd and s, t ¥ [0, T], and so S(x, t) fulfills the conditions of
Proposition 2.

More generally, it can be checked that any real homogeneous Gaus-
sian field S(x, t) defined by

OS(x, t)P=0,

OS(x, t) S(xŒ, tŒ)P=F C(k, t, tŒ) e ik(x−xŒ)ddk,

where C(k, t, tŒ) is real and positive, fulfills the conditions of Proposition 2.

V. EXPLICIT SOLUTION OF THE DIFFUSION-FREE PROBLEM FOR A

CLASS OF S

In this section we show that an explicit computation of the diffusion-
free amplification factor Oexp(Nl >T0 S(0, t)2 dt)P can be achieved if S(0, t)
is a linear functional of a Gauss–Markov process. Note that determining
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l̄cN(T) amounts to finding the largest eigenvalue of the covariance operator
t̂C0, which in principle can always be achieved, at least numerically. As
shown above, l̄cN(T) \ lcN(T) with equality holding when Proposition 2 is
applicable. Since l̄cN(T)=N −1l̄c1(T) in the diffusion free case, we will take
N=1 in the remaining of this section without loss of generality.

A. Solution of the Diffusion-Free Problem using the Feynman–Kac

Formula

We consider the case where the Gaussian process S(0, t) can be written
as

S(0, t)=Oc, Y(t)P, (19)

where Ox, yP — x†y=;i xiyi, c is a given n-dimensional vector, and Y(t) is
a n-dimensional Gauss–Markov process defined as the solution to the
linear stochastic differential equation

3dY(t)+AY(t) dt=GdB(t),
Y(0)Gaussian with OY(0)P=0.

(20)

Here, A and G are constant n×n matrices, and B(t) is a n-dimensional
Brownian motion. From Eqs. (19) and (20), it follows that one can write
the diffusion-free amplification factor as a Feynman–Kac formula

Oel >
T
0 S(0, t)

2 dtP=Oel >
T
0 OY(t), CY(t)P dtP=F v(y, T) dny, (21)

where C denotes the symmetrical n×n matrix c é c, and v(y, t) is the solu-
tion to the parabolic equation

˛
“v
“t
=(TrA+lOy, CyP) v+OAy, NPv+

1
2
OG†N, G†NP v,

v(y, 0)=1 1
2p
2n/2 1

`|U|
exp 5−1

2
Oy, U −1yP6 ,

(22)

with U=Cov[Y(0), Y(0)]. The solution to Eq. (22) has the form

v(y, t)=1 1
2p
2n/2 1

`|K(t)|
exp 5−1

2
Oy, K(t) −1 yP+l F

t

0
TrCK(s) ds6 , (23)

Diffusion Effects on the Breakdown of a Linear Amplifier Model 1309



where K(t) is a symmetrical n×n matrix which is the solution to

˛dK(t)dt
=GG†−[AK(t)+K(t) A†]+2lK(t) CK(t),

K(0)=U.

(24)

Thus, from Eqs. (21) and (23) one has

Oel >
T
0 S(0, t)

2 dtP=el >
T
0 TrCK(t) dt. (25)

with K(t) given by the Riccati equation (24).
The solution to Eq. (24) is known to explode in finite time for large

enough l. For n=1, in which case S(0, t) is itself Markovian, Eq. (24)
is solved straightforwardly (see Section 5 B). For n \ 2, the solution to
Eq. (24) can be obtained by the so-called Hamiltonian method: we define
the 2n×2n matrix

H=1 A
† −2lC

GG† −A
2

and solve the linear differential equation

d
dt
5Q(t)
P(t)
6=H 5Q(t)

P(t)
6 , (26)

with the initial condition

5Q(0)
P(0)
6=5 I

U
6 .

The solution K(t) to the Riccati equation (24) is easily checked to be given
by

K(t)=P(t) Q(t) −1, (27)

which explodes if and only if Q(t) becomes singular. (6) Since Eq. (26) is a
linear equation, it can in principle be solved by a symbolic computation
program.
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B. Application to the n=1 Case

As an example, let us consider the simplest case n=1 with
C(0, t, tŒ)=e −|t−tŒ|. In this limit, the diffusion-free amplification factor
reads

Oel >
T
0 S(0, t)

2 dtP=Oel >
T
0 Y(t)

2 dtP=el >
T
0 K(t) dt, (28)

where Y(t) is the Ornstein–Uhlenbeck process

3dY(t)+Y(t) dt=`2 dB(t),
OY(0)P=0, OY(0)2P=1,

(29)

and K(t) is the solution to the Riccati equation

˛12 dK(t)dt
=1−K(t)+lK(t)2,

K(0)=1.

(30)

Equation (30) can be easily solved by means of the substitution
2lK(t)=−d log u(t)/dt. Inserting the result into Eq. (28), one obtains

Oel >
T
0 S(0, t)

2 dtP=
eT/2

`cosh(aT)+a −1(1−2l) sinh(aT)
, l < 1/4, (31)

Oel >
T
0S(0, t)

2 dtP=
eT/2

`1+T/2
, l=1/4, (32)

Oel >
T
0 S(0, t)

2 dtP=
eT/2

`cos(aT)+a −1(1−2l) sin(aT)
, l > 1/4, (33)

where a=|1−4l|1/2. It can be seen from Eq. (33) that, for l > 1/4,
Oexp(l >T0 S(0, t)2 dt)P diverges as T tends (from below) to the critical time
Tc(l) given by

Tc(l)=
1

`4l−1
tan −1 1`4l−1

2l−1
2 , (34)

where the determination of tan −1 is such that 0 < tan −1 [ p. Inverting
Eq. (34) and using l̄cN(T)=N −1l̄c1(T) gives the diffusion-free critical
coupling l̄cN(T) in the cases where C(0, t, tŒ)=e −|t−tŒ|. (7)
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VI. DEPENDENCE OF THE CRITICAL COUPLING ON SPACE

DIMENSIONALITY

In this section we study the dependence of lcN(T) on the space dimen-
sionality D. We will restrict ourselves to the cases where the correlation
function C can be written out as

CD(x, t, tŒ)=Cd(x||, t, tŒ) CD−d(x + , t, tŒ), (35)

with CD, Cd and CD−d continuous, symmetric, and positive definite, and
where x|| is the projection of x onto a d-dimensional subspace (d < D) and
x +=x−x||. In the following, a correlation function of this type will be
called a factorable correlation function. It is worth noting that such a cor-
relation function can be very easily obtained, e.g. when the Gaussian field
S is defined by either Eq. (14) or Eq. (18) in the cases where C(k) is fac-
torable as C(k)=Cd(k||) CD−d(k + ).

We prove that as l increases, the divergence of OE(x, T)NP obtained in
the original D-dimensional problem cannot occur before the one obtained
in the projected d-dimensional problem whenever 0 [ CD−d(0, t, t) [ 1.
Since many stochastic fields S of physical interest, e.g. in optics, do have a
factorable correlation function, we expect this result to be useful for the
comparison of two-dimensional numerical simulations with experiments
and three-dimensional numerical simulations. Before expressing this result
in a more rigorous way, we begin with two technical lemmas that will be
needed in the following.

Lemma 3. Consider a D-dimensional problem and let mx(t)1 be the
largest eigenvalue of the covariance operator T̂CD and N given continuous
paths x(t). Then lcN(T, D)=[2 supx(t) m

x(t)
1 ] −1.

This lemma can be proven straightforwardly by successively consider-
ing the inequalities l > [2 supx(t) m

x(t)
1 ] −1 and l < [2 supx(t) m

x(t)
1 ] −1, and by

following the same lines of reasoning as for the proofs of Propositions 1
and 2 respectively, where one replaces the N paths x(t)=0 corresponding
to l̄cN(T)=[2mx(t)=0

1 ] −1 by N paths maximizing mx(t)1 . (8)

Lemma 4. Let K0(s, t), K1(s, t), and K2(s, t) be three symmetric
kernels such that: (i) K0(s, t)=K1(s, t) K2(s, t); (ii) K2 is a positive definite
continuous symmetric kernel; (iii) 0 [K2(t, t) < 1 and the largest eigen-
value of K1 is positive, or K2(t, t)=1 and no condition on the sign of the
largest eigenvalue of K1. Then m1(K0) [ m1(K1), where m1(Ka) denotes the
largest eigenvalue of Ka.
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The proof of this lemma is as follows: since K2 is a positive definite
continuous symmetric kernel, Mercer’s theorem holds (9) and this kernel
admits the expansion

K2(s, t)=C
i
aifi(s) fi(t), (36)

where ai \ 0 and fi(t) respectively denote the i th eigenvalue of the operator
T̂K2 and the associated normalized eigenfunction. Let f1(t) be a principal
(normalized) eigenfunction of the operator T̂K0 and m1(K0) the correspond-
ing largest eigenvalue. From the condition (i) and Eq. (36), one has

m1(K0)=(f1, T̂K0f1)=C
i
ai(fif1, T̂K1fif1)=C

i
aiMi(gi, T̂K1gi), (37)

where Mi and gi(t) are given by

Mi=(fif1, fif1),

and

gi(t)=M −1/2
i fi(t) f1(t),

such that (gi, gi)=1. By the definition of m1(K1) and from K2(t, t) [ 1,
condition (iii), one has respectively

m1(K1) \ (gi, T̂K1gi), (38)

and

C
i
aiMi=F 5C

i
aifi(t)26 f1(t)2 dt

=F K2(t, t) f1(t)2 dt [ F f1(t)2 dt=1. (39)

So, from Eqs. (37), (38), (39) and the condition (iii), it follows that
m1(K0) [ m1(K1), which proves Lemma 4.

We can now proceed to rigorously express and prove the result stated
at the beginning of this section. Let lcN(T, D) be the critical coupling asso-
ciated with a D-dimensional problem in which the correlation function of
the Gaussian field S is given by CD. One has the following proposition:

Proposition 3. For every T > 0, if CD(x, t, tŒ) is a factorable corre-
lation function such that 0 [ CD−d(0, t, t) [ 1 for 0 [ t [ T, then
lcN(T, D) \ lcN(T, d).
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The proof of this proposition is straightforward. By the definition of a
factorable correlation function one has CD(s, t)=Cd(s, t) CD−d(s, t), where
both Cd(s, t) and CD−d(s, t) are continuous, symmetric, and positive defi-
nite. Since CD−d(t, t) — CD−d(0, t, t) and 0 [ CD−d(0, t, t) [ 1 by assump-
tion, one can apply the lemma 4 with K0=CD, K1=Cd, and K2=CD−d.
It follows immediately that mx(t)1 [ m̃x||(t)1 , where m̃x||(t)1 denotes the largest
eigenvalue of the operator T̂Cd. Let xmax(t) be N paths maximizing mx(t)1 . (8)

One has supx(t) m
x(t)
1 =mxmax(t)

1 [ m̃xmax||(t)
1 , from which it follows that

supx(t) m
x(t)
1 [ supx||(t) m̃

x||(t)
1 and, by Lemma 3, lcN(T, D) \ lcN(T, d), which

proves the Proposition 3.

VII. SUMMARY AND PERSPECTIVES

In this paper, we have studied the effects of diffusion on the
divergence of the moments of the solution to a linear amplifier driven by
the square of a Gaussian field. We first proved that the divergence yielded
by a diffusion-free calculation cannot occur at a smaller coupling constant
than the one obtained from the full calculation (i.e. with diffusion). Then
we have shown that, in the case where the absolute value of the (uniformly
continuous) pump field correlation function is bounded from above by its
one-point value, there is no diffusion effect on the onset of the divergence
which is therefore given by a diffusion-free calculation. In this context, we
have solved the diffusion-free problem explicitly when the pump field is a
linear functional of a Gauss–Markov process. Finally, we have studied the
dependence of the critical coupling on the space dimensionality in the case
of a factorable correlation function. In particular, we have proved that the
divergence obtained in a D-dimensional problem cannot occur at a smaller
coupling constant than the one obtained in the projected d-dimensional
problem (d < D).

As mentioned in the introduction, we would like to extend our results
for the diffusion-amplification model (5) to the more difficult diffraction-
amplification problem (1). According to Eq. (5), the results obtained in this
paper also apply, beside some minor technical modifications, if the pump
field is a complex Gaussian field as in Eq. (1). The remaining difficulty in
extending our results to Eq. (1) lies in controlling the complex Feynman
path-integral, compared to that of the Feynman–Kac formula for the dif-
fusive case. Expressing E(x, t) as a Feynman path-integral and averaging
over the realizations of S, one cannot a priori exclude the possibility that
destructive interference effects between different path contributions make
the sum of the divergent contributions finite. Thus one cannot deduce the
divergence of the moments of E(x, L) from that of the amplification along
paths arriving at the point (x, L). However, in view of the numerical results
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of ref. 2, which strongly suggest a divergence in the diffractive case too, it is
not unreasonable to expect that Propositions 1, 2, and 3 also apply to the
diffraction-amplification problem (1). (10) Proving this conjecture is another
matter and is the subject of a future work. Note that in the case of Propo-
sition 2, the on-axis correlation function of the pump field must be real and
positive, which is quite restrictive if the pump field is complex. From a
practical point of view (e.g. in optics), it would therefore be very interesting
to find out whether there exists an enlarged version of this proposition
applying to complex on-axis correlation functions as well.
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